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Abstract
In this paper, we consider three-dimensional short-range potentials of several
components, i.e. depending on several coupling constants. For N components,
the critical domain is defined as the (N−1)-dimensional surface separating the
regions with and without a bound state in the space of the coupling constants.
It is shown that the problem of finding the critical domain can be solved
by generalizing the methods established for the determination of the critical
coupling constant in the case of a single-component potential. Applications are
made for the truncated harmonic oscillator and the square-well potentials with
a spin–orbit interaction of the Thomas form.

PACS number: 0365G

1. Introduction

In the three-dimensional space, considering short-range potentials −λV (r) (with V (r) > 0),
it is well known that the existence of a bound state is governed by the critical value of the
coupling constant λc [1]. To be specific, short-range potentials are defined so that they possess
at most a finite number of bound states. Thus, we consider potentials which decrease fast
enough to become negligible beyond a finite radius (limr→∞ r2V (r) = 0), and we discard
cases with a singularity at the origin. The critical value λc is an important characteristic of
the potential. Two different methods have been investigated for its determination [2, 3]. The
first one is based on the Green function technique (GFT) [2], while the second relies on the
Jost function at zero energy (JFM) [3]. Furthermore, the variation of the energy eigenvalue
near the critical λc has been studied [4, 5]. This variation obeys a power law, the power being
dependent on the orbital angular momentum 	.

Real physical potentials could have several components and thus depend on several
parameters. This paper considers potentials of the form U(r; λ) = −∑N

i=1 λiVi(r), where all
Vi(r) components are short-range potentials. Then, the problem of the bound state existence

reduces to the determination of a critical domain λc
def= (λ1c, λ2c, . . . , λNc), which delineates

two regions in the parameter space. In one region at least one bound state exists, while the
other contains no bound state. Note that for a potential withN components, the critical domain
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λc consists in an (N − 1)-dimensional surface in the parameter space. It reduces to a curve
splitting the plane in the two-component case.

The paper is organized as follows. We describe, in section 2, general properties of the
critical domain of the parameter space, and two procedures are developed to generalize methods
used in the single-component case. In section 3, one of these procedures is further investigated
in connection with JFM. Two typical examples are treated in section 4: critical domains
(curves) are determined for the square well and the truncated harmonic potentials with a spin–
orbit component of the Thomas form.

2. General properties of a critical domain of coupling constants

We consider short-range potentials U(r; λ) = −∑N
i λiVi(r) depending on a set λ ≡ {λi} of

coupling constants, with Vi(r) > 0. The corresponding Hamiltonian reads

H(r; λ) = T + U(r; λ). (1)

Bound state wavefunctions ψn(r,λ) are solutions of the Schrödinger equation(
− h̄

2

2m
∇2 + U(r; λ)

)
ψn(r,λ) = En(λ)ψn(r,λ) (2)

with eigenvalues En(λ) � 0. For short-range potentials, positive energy solutions
are not square integrable, and the radial part is a linear superposition of ψ±(r) ∼
exp(±ir

√
2mEn(λ)/h̄2)/r . Therefore, these solutions do not represent bound states [6].

In general, the Hamiltonian (1) possesses bound states only in a certain region of the
parameter space. Therefore, for each value of the quantum numbers, that we loosely denote
by n, the whole parameter space � � (λ1, λ2, . . . , λN) is divided into two subspaces, �nb and
�nu. In �nb the nth bound state exists, whereas it is absent in �nu. It is clear that the point
(λi = 0,∀i) ∈ �nu. The critical domain of parameters Lcn is the border between the subspaces
�nb and�nu. If n is the ground state, its critical domain represents at the same time the threshold
conditions for the appearance of a bound state.

In the case of a single component, the JFM determination of λc is achieved by setting
E = 0 in the corresponding Schrödinger equation [4]. For several components, the critical
domain Lcn is determined similarly by the relation

En(λ) = 0. (3)

This may be shown by using the Hellman–Feynman theorem [7, 8], according to which, the
variation of the eigenvalues with respect to parameters

δEn(λ) = ∂En(λ)

∂λi
δλi (4)

is linked to the variation of the Hamiltonian

δH(r; λ) = δU(r; λ) =
∑
i

∂U(r; λ)

∂λi
δλi = −

∑
i

Vi(r)δλi (5)

through

δEn(λ) =
∫ |ψn(r,λ)|2δU(r; λ) d�r∫ |ψn(r,λ)|2 d�r = −

∑
i

〈Vi〉n δλi. (6)
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Here

〈Vi〉n =
∫ |ψn(r,λ)|2Vi(r) d�r∫ |ψn(r,λ)|2 d�r .

Therefore,

∂En(λ)

∂λi
= − 〈Vi〉n . (7)

If Vi(r) > 0, ∀r , then 〈Vi〉n > 0 and

∂En(λ)

∂λi
< 0

are surely satisfied. We conclude that the function En(λ), λ ∈ �nb has no local maxima or
minima. Therefore, by increasing any λi , keeping constant all λj j �= i, En(λ) decreases
and we enter further into the region �nb . By decreasing any λi , keeping constant all λj
j �= i, En(λ) increases, approaching En(λ) = 0. So, the critical domain Lcn is determined by
equation (3).

Considering the domain Ln determined by En(λ) = constant, the following property has
to be underlined. By varying two parameters λi and λj inside Ln, we find

∂En

∂λi
δλi +

∂En

∂λj
δλj = 0 (8)

i.e.

〈Vi〉n δλi +
〈
Vj
〉
n
δλj = 0. (9)

In Ln, any λi is therefore a function of the other parameters, i.e. λi = λi(λ1, . . . ,

λi−1, λi+1, . . . , λN). By combining equation (9) with the positivity of 〈Vi〉n and
〈
Vj
〉
n

leads to

∂λi

∂λj
= −

〈
Vj
〉
n

〈Vi〉n
< 0. (10)

The latter equation shows that the function λi = λi(λ1, . . . , λi−1, λi+1, . . . , λN) is a
monotonically decreasing function of all λj , j �= i. Obviously, the critical domain Lcn,
determined by En(λ) = 0, possesses the same property.

To any method designed to obtain the critical coupling constant in the case of a single
component, we propose two procedures for its extension to the determination of the critical
domain of a multiple-component potential.

(a) In the first procedure, we introduce an auxiliary potential, U ′(r; g,λ) = gU(r; λ) =
−g(∑N

i=1 λiVi(r)
)
, with N + 1 parameters. Here, the global parameter g takes the role

of λ of a single-component potential, whereas −U(r; λ) = ∑N
i=1 λiVi(r) plays the role

of V (r). For any arbitrary set λ, we can obtain the critical value gc(λ) by applying any
method devoted to the single-component case. By generating an arbitrarily large ensemble
of sets λ, we build the function gc(λ). It is obviously assumed that U(r; λ) satisfies the
condition imposed on V (r) in the chosen method. The equation

g = gc(λ) (11)

determines the critical domain of the auxiliary potential U ′(r; g,λ). For the original
potential U(r; λ) the equation reads

1 = gc(λ). (12)
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In general, instead of equation (11), where gc is given explicitly, we will obtain a certain
implicit relation

F(g,λ) = 0 (13)

so that the equation of the critical domain of the original potential reads

F(g = 1,λ) = 0. (14)

(b) In the second procedure, we replace the set λ by
(
λ,β

def= (β1, β2, . . . , βN−1)
)
, and we

defineW(r; β) so that

λW(r; β) ≡
N∑
i=1

λiVi(r). (15)

Similarly to the previous procedure, an ensemble of arbitrary sets β determine an ensemble
of λc(β). Again any method designed for λc can be used, assuming thatW(r; β) satisfies
the conditions imposed upon V (r). However, it may happen that for some specific sets β,
no critical value λc(β) exists, and these sets must be excluded. In this way, we determine
the function λc(β), for all values of β for which a critical value λc(β) exists. The critical
domain consists of all such points (λc(β),β).

3. The Jost function method

The Jost function method has been applied to the determination of the critical coupling constant
of a potential U(λ; r) = −λV (r) in [3]. Details concerning the method can be found in this
paper. Here we shall recall few points for the sake of completeness. Assuming spherical
symmetry, the usual decomposition of the wavefunction on the spherical harmonics

ψ(r; λ) =
∑
	,m

ϕ	(r; λ)
r

Ym	 (#) (16)

leads to

d2ϕ	

dr2
=
[

2m

h̄2 (−E − λV (r)) +
	(	 + 1)

r2

]
ϕ	. (17)

It is convenient to consider at first the 	 = 0 case.
From here on, we denote (2m/h̄2)λ by λ. Looking for λc, we search for the value of λ,

such that

−d2ϕ0

dr2
− λcV (r)ϕ0 = 0 (18)

with the following constraints: ϕ0(r; λc) vanishes at r = 0, it is constant asymptotically, and
has no node ϕ0(r; λc) � 0.

The latter equation is transformed into the Volterra integral equation with the boundary
condition limr→∞ ϕ0(r; λc) = 1

ϕ0(r; λc) = 1 − λc
∫ ∞

r

(r ′ − r)V (r ′)ϕ0(r
′; λc) dr ′. (19)

Writing ϕ0(r; λc) as a series expansion

ϕ0(r; λc) =
∞∑
j=0

ϕ
(j)

0 (r; λc). (20)
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Equation (19) is solved by iteration

ϕ
(0)
0 (r; λc) = 1

ϕ
(j)

0 (r; λc) = −λc
∫ ∞

r

(r ′ − r)V (r ′)ϕ(j−1)
0 (r ′; λc) dr ′.

(21)

The condition that ϕ0(r; λc) vanishes at r = 0 leads to the equation

ϕ0(0; λc) =
∞∑
j=0

(−1)j ajλ
j
c = 0 (22)

where

a0 = 1

a1 =
∫ ∞

0
r1V (r1) dr1

...

aj =
∫ ∞

0
r1V (r1) dr1

∫ ∞

r1

(r2 − r1)V (r2) dr2 × · · ·

×
∫ ∞

rj−2

(rj−1 − rj−2)V (rj−1) drj−1

∫ ∞

rj−1

(rj − rj−1)V (rj ) drj .

(23)

Therefore, the determination of the critical value λc reduces to the search of a solution of
equation (22).

Since V (r) > 0, the coefficients aj are subject to the relationship [3]

aj � aj−1

2
M j � 2 (24)

whereM = ∫∞
0 dr rV (r). For λ � 2/M the mth-order remainder

Rm+1(λ)
def=

∞∑
j=m+1

(−1)j ajλ
j (25)

associated with the mth-order polynomial

Pm(λ)
def=

m∑
j=0

(−1)j ajλ
j (26)

fulfils the following relations:

∀p � 1 R2p(λ) � 0

∀p R2p+1(λ) � 0.
(27)

Provided thatM2 − 4a2 � 0, it has been shown [3] that the critical value λc (solution of
equation (22)) satisfies the following sequence of inequalities:

1

M
= λ1 � λ3 � λc � λ4 � λ2 � 2

M
(28)

where λj is a real root of the polynomial Pj (λ).
For these polynomials, we prove the following theorem by using mathematical induction.
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Theorem. Provided that M2 − 4a2 � 0, ∀k � 2, there exist zeros of the polynomials
P2k−3(λ), P2k−2(λ), P2k−1(λ), P2k(λ), denoted by λ2k−3, λ2k−2, λ2k−1, λ2k , respectively, so
that the following sequence of inequalities is satisfied:

1

M
� λ2k−3 � λ2k−1 � λc � λ2k � λ2k−2 � 2

M
. (29)

Here λc is the solution of equation (22).

The proof is explicitly given in appendix A.
Therefore, certain zeros of polynomials of odd (even) order determine the lower (upper)

bound for λc. The interval determined by these bounds decreases with increasing order of the
polynomial.

In the case 	 �= 0, the corresponding radial part of the wavefunction for E = 0 has to
satisfy the equation

−d2ϕ	

dr2
+
	(	 + 1)

r2
ϕ	 − λcV (r)ϕ	 = 0. (30)

After the transformations r = x1/(2	+1) and ϕ	 = r−	u	 we obtain

−d2u	

dx2
− λc

(2	 + 1)2
x−4	/(2	+1)V (x1/(2	+1))u	 = 0 (31)

which is equivalent to the s-wave case.
Consequently, we may apply the same procedure as in the case 	 = 0, with the effective

potential

Ueff(x)
def= − λc

(2	 + 1)2
x−4	/(2	+1)V (x1/(2	+1)).

It is easily verified that the latter potential is not singular as long as V (x) is not singular, so
that the procedure developed for 	 = 0 is applicable. The series expansion for the function
u	(r = 0; λc), which corresponds to expansion (22), reads

u	(r = 0; λc) =
∞∑
j=0

(−1)j a(	)j

(
λc

2	 + 1

)j
(32)

where

a
(	)
0 = 1

a
(	)
1 =

∫ ∞

0
dr1 r1V (r1)

...

a
(	)
j =

∫ ∞

0
r1V (r1) dr1

∫ ∞

r1

(
r2 − r1

(
r1

r2

)2	
)
V (r2) dr2 × · · ·

×
∫ ∞

rj−2

(
rj−1 − rj−2

(
rj−2

rj−1

)2	
)
V (rj−1) drj−1

×
∫ ∞

rj−1

(
rj − rj−1

(
rj−1

rj

)2	
)
V (rj ) drj .

(33)

In the latter expressions (in which 	 = 0, 1, 2, . . .) V (r) is the original potential.
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Turning to the case of a multiple-component potential, the second procedure described
in the preceding section is best suitable when applied in connection with the JFM together
with the above theorem. Since the JFT method is not applicable to singular potentials, any
component of Vi(r) has to be regular.

Accordingly, the parameter set (λ,β) is defined by equation (15), and the polynomials (26)
are replaced by

Pm(λ,β) =
m∑
j=0

(−1)j aj (β)λ
j . (34)

The coefficients aj (β) are given by

a0(β) = 1

a1(β) =
∫ ∞

0
r1W(r1; β) dr1

...

aj (β) =
∫ ∞

0
r1W(r1; β) dr1

∫ ∞

r1

(r2 − r1)W(r2; β) dr2 × · · ·

×
∫ ∞

rj−2

(rj−1 − rj−2)W(rj−1; β) drj−1

∫ ∞

rj−1

(rj − rj−1)W(rj ; β) drj .

(35)

In the case 	 �= 0, the polynomial (26) and the expressions (33) are generalized to

P (	)m (λ,β) =
m∑
j=0

(−1)j a(	)j (β)

(
λ

2	 + 1

)j
(36)

where

a
(	)
0 (β) = 1

a
(	)
1 (β) =

∫ ∞

0
r1W(r1; β) dr1

...

a
(	)
j (β) =

∫ ∞

0
r1W(r1; β) dr1

∫ ∞

r1

(
r2 − r1

(
r1

r2

)2	 )
W(r2; β) dr2 × · · ·

×
∫ ∞

rj−2

(
rj−1 − rj−2

(
rj−2

rj−1

)2	 )
W(rj−1; β) drj−1

×
∫ ∞

rj−1

(
rj − rj−1

(
rj−1

rj

)2	 )
W(rj ; β) drj .

(37)

The roots of the polynomials (34) and (36) depend on β. If W(r; β) � 0, the above
theorem is valid. The inequalities (29) become inequalities for roots which are functions of
β:

λ2k−3(β) � λ2k−1(β) � λc(β) � λ2k(β) � λ2k−2(β). (38)
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Since all Vi(r) > 0, the conditionW(r; β) � 0 implies, in fact, conditions on the values
of βi . In the region of βi in which the theorem is applicable, we determine the upper and the
lower limits of λc(β), by using the inequalities (38) and by increasing the value of k step by
step.

In the region ofβi in which the roots λ2k−1(β) and λ2k(β) do not satisfy the inequality (38),
the concept of lower and upper boundaries loses its meaning. Nevertheless, we are left with
approximate evaluations of the critical domain. Indeed, it turns out that for the two examples
displayed in the next section, the roots converge to a limit. Thus, the values λ2k−1(β) and
λ2k(β) get rapidly close to each other. In such a case, they may be used as an approximation
for λc(β). Note that the size of the interval between the roots should decrease with increasing
k, a point to be verified at each step.

The original parameters λi are obtained by substituting W(r; β) in the definition of the
a
(	)
j (β) in equation (37) by the right-hand side of equation (15). It yields

P (	)m (λ,β) =
m∑
j=0

(−1)jp(	)j (λ)

(
1

2	 + 1

)j
≡ P (	)m (λ) (39)

where

p
(	)
0 (λ) = 1

p
(	)
1 (λ) =

∫ ∞

0
r1

( N∑
i=1

λiVi(r1)

)
dr1

...

p
(	)
j (λ) =

∫ ∞

0
r1

( N∑
i=1

λiVi(r1)

)
dr1

∫ ∞

r1

(
r2 − r1

(
r1

r2

)2	 )( N∑
i=1

λiVi(r2)

)
dr2 × · · ·

×
∫ ∞

rj−2

(
rj−1 − rj−2

(
rj−2

rj−1

)2	 )( N∑
i=1

λiVi(rj−1)

)
drj−1

×
∫ ∞

rj−1

(
rj − rj−1

(
rj−1

rj

)2	 )( N∑
i=1

λiVi(rj )

)
drj .

(40)

The approximate critical set λc is found by searching the roots of the polynomials

P (	)2k−1(λ) = 0

P (	)2k (λ) = 0.
(41)

Note that equations (40) and (41) can be obtained directly, using the first procedure
described in section 2. We start from the equations

P (	)m (λ) =
m∑
j=0

(−1)j a(	)j

(
λ

2	 + 1

)j
= 0 m = 2k − 1 and m = 2k

associated with equation (32). Here the coefficients a(	)j are given by equation (23) (for the
	 = 0 case) and by equation (33) (for the 	 �= 0 case). Then we rewrite the latter equation
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for the potential U ′(r; g,λ) = gU(r; λ) = −g
(∑N

i=1 λiVi(r)
)

which contains the auxiliary

parameter g. We are left with

P (	)
′

m (g,λ) =
m∑
j=0

(−1)jp(	)j (λ)
( g

2	 + 1

)j
= 0 m = 2k − 1 and m = 2k

where p(	)j (λ) are obtained by substituting V (r) in aj from equation (23) and a(	)j from

equation (33), by
∑N
i=1 λiVi(r). However, these are just the coefficients given by equation (40).

At the last step we eliminate g by substituting g = 1 into P (	)
′

m (g,λ). The result is

P (	)
′

m (g = 1,λ) = P (	)m (λ) = 0 m = 2k − 1 and m = 2k.

4. Examples of two-component short-range potentials

For the sake of illustration, the generalized JFM has been applied to the case of two-component
potentials. In this respect, the choice of combining a scalar and a spin–orbit term seems
particularly interesting. Consequently, our method has been applied to

U(r; λ) = −λ1V1(r) + λ2
1

r

∂V1(r)

∂r
�	 · �s (42)

where the spin–orbit component has a Thomas form. As far as V1(r) is concerned, two
examples have been retained. The two chosen V1(r) potentials admit analytical solutions, so
that the exact critical values can be calculated, allowing a formal test of the lower and upper
boundaries, as well as the approximate evaluations in regions of the parameter space where
the inequalities (38) do not hold. The analytical solutions are given in appendix B.

4.1. Truncated harmonic potential with spin–orbit interaction

In the first example, the potential V1(r) takes the form

V1(r) = (R2 − r2),(R − r) (43)

where ,(R − r) is the step function.
The roots of polynomials P (1)5 (λ) and P (1)6 (λ) have been determined. The resulting curves

are plotted in figure 1 for 	 = 1, j = 1
2 and 	 = 1, j = 3

2 . These two limits are so close to
each other that they are indistinguishable. Moreover, they are practically identical to the exact
critical curve determined using exact solutions of the Schrödinger equation.

This example clearly shows that when the roots are becoming close to each other, they
accurately approximate the critical curve, whether or not they represent lower and upper
boundaries.

Note that the analytic solutions give access to the critical λc regardless of the principal
quantum number n, whereas the approximate JFM is valid only for the state with no node
(n = 0, i.e. the states belonging to the lowest Regge trajectory). To yield an insight into how
the critical curves behave as a function of n, the cases n = 0, 1 and 2 for 	 = 1, j = 1

2 and
	 = 1, j = 3

2 are displayed in figure 2.

4.2. Critical curves for the square-well potential with spin–orbit interaction

The second example deals with

V1(r) = ,(R − r). (44)
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Figure 1. Critical curves for the states 	 = 1, j = 1
2

(full curve) and 	 = 1, j = 3
2 (broken curve) of the

truncated harmonic potential with spin–orbit coupling are
determined using JFM. The roots of P(1)5 (λ) and P(1)6 (λ)
are indistinguishable in this figure.

Figure 2. Critical curves for bound states with principal
quantum numbern = 0, 1 and 2 for 	 = 1, j = 1

2 (full curve)
and 	 = 1, j = 3

2 (broken curve) of the truncated harmonic
potential with spin–orbit coupling. They are determined
from equation (B12).

The approximations to the critical curve, are obtained in the same way as for the preceding
case. The results are plotted in figure 3 for 	 = 1, j = 1

2 and 	 = 1, j = 3
2 . Again use has

been made of the polynomials P (1)5 (λ) and P (1)6 (λ). Here, the two limits are distinguishable,
contrary to the truncated harmonic case. Moreover, they are distinguishable in the region
where the inequalities (38) are not satisfied.

Nevertheless, the differences are small, and the curves are very close to the corresponding
exact solutions displayed in figure 4. Consequently, we reach the same conclusions as in the
previous example: lower and upper boundaries give an excellent estimate of the critical curve
in the parameter space where inequalities (38) are valid. The roots of P (1)6 (λ), on the other
hand, provide us with a fair approximation to the critical curve over the entire investigated
parameter space.

For the sake of comparison, in figure 4 we give also the critical curves for then = 0, 1 and 2
states. It is interesting to note from these curves that the limit λ1 = 0 clearly shows that
the shell-delta potential has no bound state for n, 	 �= 0—a well known property of this
potential.
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Figure 3. Critical curves for the states 	 = 1, j = 1
2

(dotted and full curves) and 	 = 1, j = 3
2 (broken curves,

– – – and — — —) of the square-well potential with spin–
orbit coupling determined using JFM. The roots of P(1)5 (λ)

(dotted and short-broken curves) and P(1)6 (λ) (full and long-
broken curves) are distinguishable. Note that the roots of
P(1)6 (λ) are in good agreement with the exact values.

Figure 4. Critical curves for bound states with principal
quantum number n = 0, 1 and 2 for 	 = 1, j = 1

2 (full
curve) and 	 = 1, j = 3

2 (broken curve) of the square-well
potential with spin–orbit coupling. They are determined from
equation (B23).

5. Conclusions

This paper is devoted to the determination of the critical domain of coupling constants in
multiple-component potentials of the form U(r; λ) = −∑N

i=1 λiVi(r). The positivity and
the spherical symmetry of Vi(r) are assumed. We also impose on Vi(r) the usual conditions
ensuring these components to be of short range and regular. Two general procedures have been
proposed, which generalize methods used to handle the single-component case [2, 3]. One of
these procedures has been used in conjunction with the JFM to treat multi-parameter critical
domains.

For two-component potentials, explicit examples have been investigated: the truncated
harmonic potential and the square-well potential, both with a spin–orbit part of the Thomas
form. In the N -dimensional parameter space, the critical domain is given by an (N − 1)-
dimensional surface delimiting the regions with and without a bound state. It reduces to
critical curves in the two-component case.

The present method has been applied to the two potentials mentioned above, by using
polynomials of order five and six. While computing the critical curves, two situations are
faced. If the inequalities (38) are satisfied, the roots of the polynomial P (1)5 (λ) and P (1)6 (λ)

yield lower and upper boundaries, respectively. In the case when equation (38) is not satisfied,
the roots are found to be close to each other, and those of P (1)6 (λ) provide us with an accurate
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approximation. Generally, in regions where the boundaries exist, the present conclusions
are safely extended to other potentials and higher parameter spaces. In regions where the
inequalities (38) are not satisfied, we take as a conjecture that the roots of P (	)m (λ) approximate
the critical curve (surface) with increasing accuracy as m increases.

The advantage of the chosen illustrative examples lies in the fact that they admit analytical
solutions. Consequently, the approximate boundaries can be checked against exact values. A
very satisfactory agreement has been found in these two cases.

Appendix A. Proof of the theorem stated in section 3

We assume thatV (r) � 0 for ∀r and limr→0 r
2V (r) = 0. As was shown in [3], the coefficients

aj satisfy aj > 0 and aj+1/aj � M/2. The series Rm+1(λ) and polynomial Pm(λ) are defined
in equations (25) and (26).

We shall prove the following theorem by mathematical induction.

Theorem. ProvidedM2 −4a2 � 0, ∀k � 2, there exist the real zeros of polynomials P2k−3(λ),
P2k−2(λ), P2k−1(λ), P2k(λ), denoted respectively by λ2k−3, λ2k−2, λ2k−1, λ2k and the real root
λc of equation (22) so that the following series of inequalities is satisfied:

1

M
� λ2k−3 � λ2k−1 � λc � λ2k � λ2k−2 � 2

M
. (A1 = (29))

Proof. The existence of real λc was proved in [3] as follows:

ϕ0(r = 0; λ1) = P1(λ1) + R2(λ1) = R2(λ1) � 0 (A2)

because λ1 is the root of P1(λ). Provided M2 − 4a2 � 0, the root λ2 of P2(λ) satisfies
λ2 � 2/M . Then,

ϕ0(r = 0; λ2 � 2/M) = P2(λ2) + R3(λ2) = R3(λ2) � 0. (A3)

Since ϕ0(r = 0; λ) changes sign in the interval (λ1 = 1/M, λ2), it has to exist a real root λc
which satisfies

1

M
= λ1 � λc � λ2 � 2

M
. (A4)

From the uniqueness of λc and relations (A2)–(A4) it follows

ϕ0(r = 0; λ < λc) > 0 (A5)

ϕ0(r = 0; λc < λ < 2/M) < 0. (A6)

For k = 2 inequality (29) becomes the inequality (28), which was proved in [3] too. Let
us now assume that the following inequality is satisfied:

λ2k−3 � λc � λ2k−2 k > 2. (A7)

For 2/M � λ � 0 the remainder R2k+1(λ) � 0, so that it has to be P2k(λc) � 0, in order
that ϕ0(r = 0; λc) = 0 would be satisfied. We also have

P2k(λ2k−2) = P2k−2(λ2k−2)− a2k−1λ
2k−1
2k−2 + a2kλ

2k
2k−2 � 0 (A8)

because λ2k−2 is a zero of the polynomial P2k−2(λ). This means that the polynomial P2k(λ)

changes sign on the interval [λc, λ2k−2], so that there must exist the zero of the polynomial
P2k(λ), denoted by λ2k , such that λc � λ2k � λ2k−2.
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The left-hand side of inequality (A1 = (29)) is proved in the same way. P2k−1(λc) � 0,
because R2k(λ) � 0 for 2/M � λ � 0. We also have

P2k−1(λ2k−3) = P2k−3(λ2k−3) + a2k−2λ
2k−2
2k−3 − a2k−1λ

2k−1
2k−3 � 0. (A9)

The polynomial P2k−1(λ) changes sign on the interval [λ2k−3, λc], so that there must exist
the zero of the polynomial P2k−1(λ), such that

λ2k−3 � λ2k−1 � λc. (A10)

So, the left-hand side of the inequality (A1) is proved too. �
It is important to note that from relation (A5) and R2k+1(λ < 2/M) � 0 it follows that

P2k(λ < λc) > 0. This means that P2k(λ) has no roots which are smaller than λc. Therefore,
if there exists more than one real zero of polynomial P2k(λ) which are smaller than λ2, the
smallest among them is the best approximation for λc and should be taken for λ2k .

Similarly, from the relation (A6) and R2k(λ < 2/M) � 0 it follows that P2k−1(λc < λ <

2/M) < 0. This means that P2k−1(λ) has no roots in the interval (λc, 2/M). Therefore, if
there exist more than one real zero of the polynomial P2k−1(λ) in the interval (1/M, 2/M),
the largest one should be taken in applying the inequality (29) for the determination of λc.

Appendix B. Exact solutions and critical curves for the two potentials of section 4

The first case is the truncated harmonic oscillator with spin–orbit potential

U(r; λ) = −λ1V1(r) + λ2
1

r

∂V1(r)

∂r
�	 · �s (B1 = (42))

with

V1(r) = (R2 − r2),(R − r). (B2)

The radial part of the corresponding Schrödinger equation for s = 1
2 (h̄ = 2m = 1) is[

− 1

r2

∂

∂r

(
r2 ∂

∂r

)
+
	(	 + 1)

r2
− λ1(R

2 − r2),(R − r)

−λ2,(R − r)(j (j + 1)− 	(	 + 1)− 3
4

)− E
]
ψ	j (r) = 0. (B3)

After the introduction of a new variable x = r/R, and taking E = 0, the latter equation takes
the form [

− 1

x2

d

dx

(
x2 d

dx

)
+
	(	 + 1)

x2
− λ′

1V
′

1(x)− λ′
2V

′
2(x)

]
ψ	j (x) = 0. (B4)

This is the radial part of the Schrödinger equation (for E = 0) with the effective potential

U ′(x; λ′) = −λ′
1V

′
1(x)− λ′

2V
′

2(x) (B5)

where

V ′
1(x) = (1 − x2),(1 − x) V ′

2(x) = ,(1 − x)
λ′

1 = λ1cR
4 λ′

2 = λ2cR
2
(
j (j + 1)− 	(	 + 1)− 3

4

)
.

(B6)

The solution of equation (B4), which is proportional to x	 near x = 0, is

ψ	j (x) = constant × e−
√
λ′

1x
2/2(√λ′

1x
2
)	/2

1F1

(
	

2
+

3

4
− λ

′
1 + λ′

2

4
√
λ′

1

, 	 +
3

2
,

√
λ′

1x
2

)
(B7)
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where 1F1(a, b, x) is the confluent hypergeometric function. The logarithmic derivativeL(1−)
of ψ	j (x) at x = 1− is

L(1−) = 	−
√
λ′

1 +

[
2
√
λ′

1

(
	

2
+

3

4
− λ

′
1 + λ′

2

4
√
λ′

1

)
1F1

(
	

2
+

7

4
− λ

′
1 + λ′

2

4
√
λ′

1

, 	 +
5

2
,

√
λ′

1

)]

×
[
(	 + 3

2 ) 1F1

(
	

2
+

3

4
− λ

′
1 + λ′

2

4
√
λ′

1

, 	 +
3

2
,

√
λ′

1

)]−1

. (B8)

In the region x > 1 we look for the solution of the equation[
− d2

dx2
− 2

x

d

dx
+
	(	 + 1)

x2

]
ψ	j = 0. (B9)

Imposing the required conditions, it reads

ψ	j (x) = constant × x−(	+1). (B10)

The logarithmic derivative of the latter function at x = 1+ is

L(1+) = −(	 + 1). (B11)

The left and right logarithmic derivative at x = 1 have to be equated. This condition yields
the following relation:

2	 + 1 −
√
λ′

1 +

[
2
√
λ′

1

(
	

2
+

3

4
− λ

′
1 + λ′

2

4
√
λ′

1

)
1F1

(
	

2
+

7

4
− λ

′
1 + λ′

2

4
√
λ′

1

, 	 +
5

2
,

√
λ′

1

)]

×
[
(	 + 3

2 ) 1F1

(
	

2
+

3

4
− λ

′
1 + λ′

2

4
√
λ′

1

, 	 +
3

2
,

√
λ′

1

)]−1

= 0. (B12)

The values of parameters λ′
1 and λ′

2 which satisfy this equation determine critical pairs
(λ2cR

2, λ1cR
4).

The second case is the square-well potential with spin–orbit interaction:

U(r,λ) = −λ1,(R − r)− λ2
1

R
δ(R − r)�	 · �s. (B13)

The radial part of the corresponding Schrödinger equation (h̄ = 2m = 1) forE = 0 and s = 1
2

is[
− 1

r2

∂

∂r

(
r2 ∂

∂r

)
+
	(	 + 1)

r2
− λ1,(R − r)

−λ2

R
δ(R − r) 1

2

(
j (j + 1)− 	(	 + 1)− 3

4

)]
ψ	j (r) = 0. (B14)

After the transformation ψ	j = u	j /r and the introduction of a new variable x = r/R, the
latter equation takes the form[

− d2

dx2
+
	(	 + 1)

x2
− λ′

1V
′

1(x)− λ′
2V

′
2(x)

]
u	j (x) = 0 (B15)

where

U ′(x,λ′) = −λ′
1V

′
1(x)− λ′

2V
′

2(x)

V ′
1(x) = ,(1 − x) V ′

2(x) = δ(1 − x)
λ′

1 = λ1cR
2 λ′

2 = λ2c
1
2 (j (j + 1)− 	(	 + 1)− 3

4 ).

(B16)



Critical domain of coupling constants of short-range potentials 917

By integrating equation (B15) from 1 − ξ to 1 + ξ , where ξ is a small number, and by
determining the limiting value of this integral when ξ → 0, we obtain the condition

L(1+)− L(1−) + λ′
2 = 0 (B17)

where L(1−) and L(1+) are left and right logarithmic derivatives at x = 1.
If λ′

1 > 0, the solution of equation (B15) which is proportional to x	+1 near x = 0 is

u	j (x) = constant × x1/2J	+1/2
(
x/

√
λ′

1

)
(B18)

where J	+1/2 is the Bessel function. The logarithmic derivative L(1−) for 	 = 1 is

L(1−) = λ′
1 − 1 +

√
λ′

1 cot
√
λ′

1

1 −√
λ′

1 cot
√
λ′

1

. (B19)

For λ′
1 < 0 and 	 = 1 we find

L(1−) = −|λ′
1| − 1 +

√|λ′
1| coth

√|λ′
1|

1 −√|λ′
1| coth

√|λ′
1|

. (B20)

In the region x > 1 we look for the solution of the equation(
− d2

dx2
+
	(	 + 1)

x2

)
u	j = 0. (B21)

Its solution, which does not diverge when x → ∞, is

u	j = constant × x−	

so that

L(1+) = −	. (B22)

By substituting (B19), (B20) and (B22) into the condition (B17), for 	 = 1 we find

λ′
2 =




λ′
1 − 1 +

√
λ′

1 cot
√
λ′

1

1 −√
λ′

1 cot
√
λ′

1

+ 1 λ′
1 > 0

−|λ′
1| − 1 +

√|λ′
1| coth

√|λ′
1|

1 −√|λ′
1| coth

√|λ′
1|

+ 1 λ′
1 < 0.

(B23)
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